
Homework	5	
BY:	NOA	SHADMON	

ID:	5980	
Honor Code: ``The codes and results derived by using these codes constitute my own work. I have 
consulted the following resources regarding this assignment:'' (ADD: names of persons or web 
resources, if any, excluding the instructor, TAs, and materials posted on course website) 
Kathleen	Zhen,	code	posted	on	piazza,	and	discussion	notes	(posted	by	Nick)		
	
Problem	1	
The	first	time	we	run	the	code,	we	get	𝛽" = -5.071102	and	𝛽+ = 2.016006	with	𝜎. =
0.9827592.	For	all	10	runs,	the	theoretical	confidence	interval	for	𝛽"	is	always	greater	than	
that	for	bootstrap	procedure.	This	is	also	true	for	𝛽+.	This	is	again	seen	when	we	calculate	the	
average	values	for	the	slope	and	intercept	coefficients	for	the	theoretical	and	bootstrap	
samples.	The	average	theoretical	𝛽"=	0.830346	and	the	average	bootstrap	𝛽" = 0.6838061.	
The	average	theoretical	𝛽+=	0.1230048	and	the	average	bootstrap	𝛽+ = 0.1046841.		
	
Problem	2	
Using	the	logistic	model,	we	created	a	confusion	model.	Of	the	20	plants	(using	Sepal.Length	as	
the	predictor),	the	system	predicted	12	setosa	plants	and	8	versicolor	plants	even	though	there	
are	10	of	each.	This	model	is	90%	accurate	(code	to	calculate	accuracy	attached).	

	
Using	the	linear	discriminant	analysis	the	system	predicted	13	setosa	plants	and	7	versicolor	
plants	(using	Sepal.Length	as	the	predictor).	This	model	predicted	85%	correctly.	

	
Using	the	k	nearest	neighbor’s	algorithm,	when	k=3	the	confusion	matrix	is	as	such:	

	
Here,	the	system	predicted	14	setosas	and	6	versicolor.	This	model	is	80%	accurate.	When	k=5,	
the	confusion	shows	a	prediction	of	12	setosas	and	8	versicolors.	This	model	is	90%	accurate.	

	



From	the	tables	and	using	the	calculated	accuracy	values,	we	can	conclude	that	the	logistic	
model	and	k	nearest	neighbors	(with	k	=	5)	is	the	best	for	classification	prediction	when	
sepal.length	is	the	predictor.		
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	



APPENDIX	
library(readr)	
library(broom)	
library(MASS)	
library(class)	
#PROBLEM	1	
resample	=	function(data)	{	
		n	=	nrow(data)	
		#	Sample	row	numbers	(i)	rather	than	values	(e_i)	
		idx	=	sample(n,	n,	replace	=	TRUE)	
			
		#	Use	row	numbers	to	get	new	residuals	(e2_i).	
		res_samp	=	data$.resid[idx]	
			
		#	y2_i	=		b_0	+	b_1	*	x_i				+	e2_i	
		y_samp	=		data$.fitted							+	res_samp	
			
		#	Insert	new	response	(y_i)	into	data	frame,	keeping	old	covariates	(x_i)	
		data$gift_aid	=	y_samp	
			
		#	Fit	the	same	model	with	new	data	(y2_i,	x_i).	
		new_mod	=	lm(gift_aid	~	x,	data)	
			
		return	(coef(new_mod))	
}	
	
prob1	=	function(seed)	{	
		set.seed(seed)	#	only	set	the	seed	once,	at	the	beginning	
			
		#	Part	1	
		x	=	rchisq(n	=	100,	df	=	6)	
		e	=	rnorm(n	=	100,	mean	=	0,	sd	=	1)	
		y	=	-5	+	2*x	+	e	
			
		#	Part	2	
		mod	=	lm(y	~	x)	
		summ	=	summary(mod)	
		print(summ$coefficients)	
		sigma	=	summ$sigma	
		print(sigma)	
		resid	=	augment(mod)	
		#	Part	3	
		theo	=	confint(mod)	
		boot	=	sapply(1:400,	function(i)	resample(resid))	



		ci_intercept	=	quantile(boot[1,	],	c(0.05,	0.95))	
		ci_slope					=	quantile(boot[2,	],	c(0.05,	0.95))	
			
		theo_diff_int	=	abs(theo[3]	-	theo[1])	
		theo_diff_x	=	abs(theo[4]	-	theo[2])	
		diff_int	=	abs(ci_intercept[[1]]	-	ci_intercept[[2]])	
		diff_slope	=	abs(ci_slope[[1]]	-	ci_slope[[2]])	
			
		ci_widths	=	data.frame(theo_diff_int,	theo_diff_x,	diff_int,	diff_slope)	
			
		#	Return	widths	of	both	the	theoretical	and	bootstrap	confidence	intervals:	
		return	(ci_widths)	
}	
	
all_ci_widths	=	sapply(1:10,	prob1)	
#average	of	theoretical	intercept	confidence	interval	
theo_avg_int	=	mean(as.numeric(as.vector(all_ci_widths[1,])))	
#average	of	theoretical	slope	confidence	interval	
theo_avg_x	=	mean(as.numeric(as.vector(all_ci_widths[2,])))	
#average	of	boot	intercept	confidence	interval	
diff_avg_int	=	mean(as.numeric(as.vector(all_ci_widths[3,])))	
#average	of	boot	slope	confidence	interval	
diff_avg_slope	=	mean(as.numeric(as.vector(all_ci_widths[4,])))	
	
#part	2	
data(iris)	
	
data	=	iris[1:100,]	
test	=	rbind(data[41:50,],	data[91:100,])	
training	=	rbind(data[1:40,],	data[51:90,])	
test	=	droplevels(test)	
training	=	droplevels(training)	
log_model	=	glm(Species	~	Sepal.Length,	training,family	=	binomial)	
	
#	Predict	for	test	data.	Use	type	=	"response"	to	get	class	probabilities.	
log_pred	=	predict(log_model,	test,	type	=	"response")	
#	Convert	predictions	to	1	or	2,	for	category	1	or	2	respectively.	
log_pred	=	(log_pred	>	0.5)	+	1	
log_pred	=	levels(training$Species)[log_pred]	
	
log_con	=	tabcle(true	=	test$Species,	model	=	log_pred)	
acc_log	=	sum(log_con[1],log_con[4])/sum(log_con[1],log_con[2],log_con[3],log_con[4])	
	
lda	=	lda(Species~Sepal.Length,	training)	



lda_pred	=	predict(lda,	test,	type	=	"response")	
lda_pred	=	levels(training$Species)[lda_pred$class]	
lda_con	=	table(true	=	test$Species,	model	=	lda_pred)	
acc_lda	=	sum(lda_con[1],lda_con[4])/sum(lda_con[1],lda_con[2],lda_con[3],lda_con[4])	
	
knn_pred3	=	knn(	
		#	Note	the	use	of	[	]	rather	than	$	or	[[	]].	
		#	
		#	The	knn()	function	expects	a	matrix	or	data	frame	for	the	train	and	test	
		#	arguments.	Using	$	or	[[	]]	would	get	a	vector	rather	than	a	data	frame.	
		#	
		train	=	training["Sepal.Length"],	#	1-col	data	frame	
		test		=	test["Sepal.Length"],		#	1-col	data	frame	
		cl				=	training$Species,																							#	vector	
		k					=	3	
)	
	
knn_con3	=	table(true	=	test$Species,	model	=	knn_pred3)	
acc_knn3	=	
sum(knn_con3[1],knn_con3[4])/sum(knn_con3[1],knn_con3[2],knn_con3[3],knn_con3[4])	
	
knn_pred5	=	knn(	
	
		train	=	training["Sepal.Length"],	#	1-col	data	frame	
		test		=	test["Sepal.Length"],		#	1-col	data	frame	
		cl				=	training$Species,																							#	vector	
		k					=	5	
)	
	
knn_con5	=	table(true	=	test$Species,	model	=	knn_pred5)	
acc_knn5	=	
sum(knn_con5[1],knn_con5[4])/sum(knn_con5[1],knn_con5[2],knn_con5[3],knn_con5[4])	
	


